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Abstract

We introduce a modal spectral element method which employs the variational multiscale approach for large eddy sim-
ulation. The method is sufficiently general for application to complex flow geometries, but requires relatively few degrees of
freedom for a given mesh and polynomial order. We investigate the performance of the method for fully-developed tur-
bulent channel flow. It is shown that large increases in accuracy can be obtained when the basic dynamics of near-wall
coherent structures can be represented using the portion of the modal basis which is free of the subgrid-scale model. This
implies that in spite of its lack of orthogonality, the modal basis provides sufficient scale separation to exploit the advan-
tages of the variational multiscale approach.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The variational multiscale (VMS) method was introduced by Hughes et al. [7,8,10] as a general framework
for deriving models and numerical methods for the simulation of multiscale phenomena present in many engi-
neering problems. These multiscale concepts were extended to turbulence simulation, leading to the develop-
ment of the VMS method for Large Eddy Simulation (LES) [11]. In the VMS method, the equations of motion
for the resolved scales are obtained by ‘a priori’ scale decomposition and variational projection. When a hier-
archical basis is employed to represent the resolved scales of motion, the resulting variational form can be
written as a coupled set of equations describing the dynamics of the large resolved and small resolved scales.
As described by Collis [1], this leads to the key feature of the VMS approach as it allows for different modeling
assumptions for each range of the resolved scales. One typically confines modeling to the equations describing
the small resolved scales. In doing so, numerical consistency is retained in the large resolved scales, allowing
full rate of convergence of the numerical method used to solve the large-scale equations. When using eddy-
viscosity SGS models (as commonly done in LES), this is advantageous compared to traditional LES
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approaches which suffer from reduced convergence rates in all the resolved scales due to model-related arti-
ficial-viscosity effects [9].

Prior VMS implementations have demonstrated promising results for turbulence simulation in simple
geometries. The VMS method was first applied to decaying homogeneous isotropic turbulence [12] and turbu-
lent channel flows [13,20] using a global spectral discretization in the homogeneous directions. With a con-
stant-coefficient Smagorinsky model [28] only in the small-scale equation, the VMS method outperformed
traditional LES formulations using more complex dynamic models. A finite-element based VMS-LES method
employing a hierarchical serendipity-like basis was introduced by Jansen and Tejada-Martı́nez [14], who
applied it to decaying isotropic turbulence. A very general finite-element based approach was also introduced
by Collis [2], who merged the VMS method with a high-order accurate discontinuous Galerkin method using
an orthogonal basis. An extensive investigation of this VMS discretization in the context of turbulent channel
flow was performed by Srinivasan and Collis [23,25]. It was demonstrated that the VMS approach leads to
increased computational efficiency compared to traditional LES methods using similar subgrid-scale (SGS)
models on all scales. The partition between the large and small scales in a simulation was found to be a crucial
parameter for obtaining high-quality solutions. In particular, this partition should be chosen such that the
large-scale coherent structures are free from the direct influence of the SGS model. Another VMS formulation
capable of handling unstructured domains was introduced by Koobus and Farhat [17], who employed a finite
volume/element method, in which scale separation was based on cell agglomeration. Results obtained using
this method for a vortex shedding flow past a square cylinder were in better agreement with experimental data
than those predicted by a traditional LES formulation.

The application of global spectral methods to the channel problem normally exploits the presence of peri-
odic homogenous planes. This approach can be difficult to extend to more complex flow geometries. Discon-
tinuous Galerkin methods, on the other hand, are very general, but have a relatively large number of degrees
of freedom for a given mesh and polynomial order of the solution approximation. A third possibility is to use
space-continuous spectral-element methods, which have less degrees of freedom than discontinuous methods
for a given mesh and polynomial order. In this paper, we introduce a modal-based space-continuous FEM for
VMS-LES. Like the bases used by Hughes and Collis, it is hierarchical in nature, but unlike them it is only
approximately orthogonal. We therefore, investigate whether the previously observed advantages of the
VMS formulation are realized by the proposed modal-based formulation. To do so we consider its perfor-
mance for fully-developed turbulent channel flow. We focus on the effect of SGS modeling together with spa-
tial resolution requirements, which leads to guidelines for obtaining reasonable low-order turbulence statistics.
In this process, we compare results obtained using the present VMS formulation to those obtained from a tra-
ditional LES formulation as well as results obtained using no SGS model.

2. Governing equations

We consider the compressible Navier–Stokes equations in conservation form
U;t þ Fi;iðUÞ � Fv
i;iðUÞ ¼ S; ð1Þ
where U = {q, qu, qe}T is the vector of conservative variables, q the fluid density, u = {u, v, w}T the fluid
velocity vector, and e ¼ iþ 1

2
uiui the total energy per unit mass, where i the internal energy per unit mass.

In the above equations, the Einstein summation convention for repeated indices is employed, and subscripts
following a comma denote differentiation with respect to the subscript. The inviscid flux vectors Fi(U), the vis-
cous flux vectors Fv

i ðUÞ, and the source vector S are defined as
FiðUÞ ¼ uiUþ p
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where p is the thermodynamic pressure, dij is the Kronecker delta, sij is the viscous stress tensor, qj is the heat
flux vector, and fi is a body force per unit mass. The system of equations (1) is closed by the following con-
stitutive relations
sij ¼ 2l Sij �
dij

3
Skk

� �
; ð3Þ

qi ¼ �jT ;i; ð4Þ
p ¼ ðc� 1ÞqcvT ; ð5Þ
i ¼ cvT ; ð6Þ
where (3) implies a Newtonian fluid with l the molecular viscosity coefficient and Sij ¼ 1
2
ðui;j þ uj;iÞ the strain-

rate tensor. Eq. (4) is Fourier’s law of heat conduction with j the thermal conductivity coefficient and T the
absolute temperature. The equation of state (5) implies a perfect gas (i.e. intermolecular forces are negligible),
where c = cp/cv with cp and cv the specific heat at constant pressure and constant volume, respectively. Finally,
the internal energy is related to the absolute temperature by the caloric equation of state (6).

The Navier–Stokes equations can be written in quasi-linear form
U;t þ AiU;i � ðKijU;jÞ;i ¼ S; ð7Þ
where Ai = Fi,U are the inviscid flux Jacobians and Kij are the diffusivity matrices, satisfying KijU;j ¼ Fv
i .

The Navier–Stokes equations in conservation form can be solved using any set of variables [6] by introduc-
ing a transformation U = U(Y), where Y is a new set of variables. Using this transformation the quasi-linear
form (7) can be expressed in terms of Y as
eA0Y;t þ eA iY;i � ðeKijY;jÞ;i ¼ S; ð8Þ
where
eA0 ¼ U;Y; eA i ¼ Ai
eA0; and eK ij ¼ Kij

eA0: ð9Þ

For convenience of implementing boundary conditions for channel flow, i.e. no slip and a constant wall tem-
perature, we use Y = {q,u,T}T. The coefficients of eAi and eKij for the present and alternative sets of variables
can be found in refs. [6,19].
3. Finite element discretization

3.1. Space–time topology

The fixed spatial domain for the problem is denoted by X, which is an open, bounded subset of Rd , with
d 2 {1,2,3} the spatial dimension, and boundary oX. Let the time interval of interest I = (0, T) be partitioned
into N time slabs In = (tn,tn+1). A space–time slab is then defined as Qn = X · In with lateral boundary
Pn = oX · In, as shown in Fig. 1.

Let the spatial domain X for the nth space–time slab be subdivided into (nel)n elements Xe
n; e ¼ 1; . . . ; ðnelÞn.

The space–time elements for the nth slab are then defined as Qe
n ¼ Xe

n � In.
Within the space–time slabs Q the solution is approximated using polynomials of order P in space and lin-

ear in time. Let PkðbQÞ be the space of polynomials of degree 6P defined on the master elementbQ ¼ ð�1; 1Þdþ1, then
PP ðQeÞ ¼ f/j/ ¼ /̂ �T�1; /̂ 2PkðbQÞg; ð10Þ
where T : bQ 7!TðbQÞ denotes the mapping from the master element to physical space. The finite element
approximation and weighting spaces can then be defined as
Yh
n ¼ fYhjYh 2 ðC0ðQnÞÞm;YhjQe

n
2 ðPP ðXe

nÞ �P1ðInÞÞm;Yh ¼ gðtÞ on CDg; ð11Þ



Fig. 1. Sketch of a space–time slab.

392 E.A. Munts et al. / Journal of Computational Physics 224 (2007) 389–402
and
W h
n ¼ fWhjWh 2 ðC0ðQnÞÞm;WhjQe

n
2 ðPP ðXe

nÞ �P1ðInÞÞm;Wh ¼ 0 on CDg; ð12Þ
where m = d + 2 is the number of conservative variables, g(t) is the vector of Dirichlet conditions and CD is the
portion of the space–time slab boundary where Dirichlet boundary conditions are specified.

3.2. Time-discontinuous galerkin method

We employ the time-discontinuous Galerkin method [27], so that the variational formulation of the com-
pressible Navier–Stokes equations (1) can then be stated as follows: Within each slab Qn, find Yh 2Yh

n such
that 8Wh 2W h

n
Z
Qn

ð�Wh
;t �UðYhÞ �Wh

;i � FiðYhÞ þWh
;i � eKijY

h
;jÞ dQþ

Z
Pn

Wh � ðFiðYhÞ � Fv
i ðYhÞÞni dP

þ
Z

X
ðWhðt�nþ1Þ �UðY

hðt�nþ1ÞÞ �Whðtþn Þ �UðY
hðt�n ÞÞÞ dX

¼
Z

Qn

Wh � S dQ: ð13Þ
The third line in (13) is obtained by adding the jump condition
Z
Xn

Whðtþn Þ � ½½UðY
hðtnÞÞ�� dX ð14Þ
to the terms resulting from the integration-by-parts of the time terms. For time-discontinuous Galerkin meth-
ods, the jump condition provides the mechanism by which information is propagated from one slab to the
next. In other words, it imposes a weakly-enforced boundary condition. When using piecewise-linear basis
functions in the temporal direction, this method is third-order accurate in time [27].

To simplify notation, we introduce the following shorthand notation for the variational form (13)
BðW;UÞ ¼ ðW;SÞ: ð15Þ



Fig. 2. Shape of the one-dimensional modal expansion for a polynomial degree P = 5 and a = b = 1.0 (From Karniadakis and Sherwin
[15], reproduced with permission).
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3.3. Spatial finite element basis

Traditionally, finite element methods make use of Lagrangian approximation bases, which consist of a set
of (nodal) polynomial basis functions of equal degree. Consequently, these bases do not readily lend them-
selves to scale decomposition, such as required by the VMS method. Here, we consider a spatially continuous
spectral element method, employing a hierarchical high-order polynomial basis [15]. On a one-dimensional
master element with n 2 (�1,1) this basis is defined as
Fig. 3
P1 = P
/pðnÞ7!wpðnÞ ¼

1�n
2

� �
p ¼ 0;

1�n
2

� �
1þn

2

� �
P a;b

p�1ðnÞ 0 < p < P ;
1þn

2

� �
p ¼ P ;

8><
>: ð16Þ
where P a;b
p�1ðnÞ are Jacobi polynomials of degree p � 1. Although in fact any Jacobi polynomial (e.g. Legendre

or Chebychev) can be used, here we employ Jacobi polynomials with a = b = 1.0 as they are approximately
orthogonal, maximizing their suitability for VMS-LES. An example of this basis with P = 5 is shown in
Fig. 2. For rectangular elements, the multi-dimensional modal bases can be simply constructed by a product
of the one-dimensional bases in each of the coordinate directions, as shown in Fig. 3.

Note that the modal basis (16) consists of a hierarchy of polynomials of increasing degree. As the polyno-
mial degree increases, smaller-scale behavior can be captured by the corresponding basis functions. We define
the parameter eP to partition the resolved scales into large and small scales, where basis functions of degree

P eP in one or more of the spatial coordinate directions represent the small scales. The large scales are then
described by the remaining low order basis functions.
. Construction of a two-dimensional modal expansion basis from the product of two one-dimensional expansions of degree

2 = 4 (From Karniadakis and Sherwin [15], reproduced with permission).
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4. The variational multiscale method

Here, we give a brief outline of the VMS method. A more detailed description can be found in Collis [1] and
Hughes et al. [11]. We follow the three-level multiscale formulation introduced by Collis [1], in which both the
solution and weighting functions are decomposed as
U ¼ Uþ eU þ bU; W ¼WþfW þcW; ð17Þ

where U are the large scales, eU are the small scales, bU are the unresolved scales, and a similar decomposition is
used for the weighting functions. Note that both the large and small scales are part of the resolved scales. The
equations describing the dynamics of the large, small and unresolved scales of motion are obtained by substi-
tuting (17) into the variational form (15), yielding
Large : BðW;Uþ eU þ bUÞ ¼ ðW;SÞ;
Small : BðfW;Uþ eU þ bUÞ ¼ ðfW;SÞ;

Unresolved : BðcW;Uþ eU þ bUÞ ¼ ðcW;SÞ;
which constitute a coupled set of equations, referred to as the large, small, and unresolved-scale equations. If a
non-orthogonal finite element basis is employed, the large-scale equation can be written as
BðW;UÞ þ B0ðW;U; eUÞ � RðW; eUÞ ¼ ðW;SÞ � B0ðW;U; bUÞ þ RðW; bUÞ þ CðW; eU; bUÞ; ð18Þ

and the small-scale equation is
B0ðfW;U; eUÞ � RðfW; eUÞ ¼ �½BðfW;UÞ � ðfW;SÞ� � B0ðfW;U; bUÞ þ RðfW; bUÞ þ CðfW; eU; bUÞ: ð19Þ

In these expressions, B0ðW;U;U0Þ is the operator BðW;UÞ linearized about U for a linear perturbation U 0,
CðW; eU; bUÞ is the generalized cross-stress projection onto the large scales, and RðW; eUÞ is the generalized
Reynolds-stress projection onto the large scales. The detailed expressions for these terms can be found in
Munts [19]. As described by Collis [1], for incompressible flows, CðW; eU; bUÞ and RðW; eUÞ are identical to
the projection of the cross-stress and Reynolds stress onto the large scales. For compressible flows, these
terms are more complicated due to additional terms arising from the variable density and terms in the energy
equation.

Next, we make the following SGS modeling assumptions as is typically done in the VMS method
[1]. The unresolved scales are assumed to have negligible direct influence on the dynamics of the large
scales. Consequently, all terms involving the unresolved scales in the large-scale equation (i.e. the sec-
ond line in (18)) are set to zero. The small and unresolved scales, on the other hand, are closer in
scale and thus the effect of the unresolved scales on the small scales must be modeled. Therefore,
all terms involving the unresolved scales in the small-scale equation (i.e. the second line in (19)) are
replaced by a model MðfW; eUÞ. With these modeling assumptions, the large and small-scale equations
become
BðW;UÞ þ B0ðW;U; eUÞ � RðW; eUÞ ¼ ðW;SÞ; ð20Þ
B0ðfW;U; eUÞ � RðfW; eUÞ ¼ �½BðfW;UÞ � ðfW;SÞ� þMðfW; eUÞ; ð21Þ
respectively. Note that the above modeling assumptions do not imply that the large scales do not feel the influ-
ence of the model. In fact, the large scales are still indirectly influenced by the model through its interaction
with the small scales. However, the coupling terms in the large-scale equation which provide this interaction
are still in their exact form. Moreover, since the large-scale equation does not have explicit modeling terms, it
allows full-rate of convergence of the underlying numerical discretization. This key feature is referred to as the
consistency property of the large scales with the Navier–Stokes equations [1,11].

A thorough discussion on SGS modeling for compressible flows is provided by Martin et al. [18]. Here, we
make the assumption that if the unresolved scales are sufficiently small, their effect can be reasonably modeled
using an eddy-viscosity assumption, as is commonly done in LES. This concept stems from the analogy
between turbulent stresses and viscous stresses, so that the model term can be written as



Fig. 4.
walls.
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MðfW; eUÞ ¼ � Z
Qn

fW;i � Fm
i ðeUÞ dQþ

Z
Pn

fW � Fm
i ðeUÞni dP; ð22Þ
where Fm
i ðeUÞ is the model flux vector
F m
i ðeUÞ ¼

0

sm
1i

sm
2i

sm
3i

sm
ij~uj � qm

i

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
; ð23Þ
with sm
ij the SGS stress tensor, and qm

i the SGS heat transfer.
The VMS method employing the constant-coefficient Smagorinsky model [28] has proven to be successful in

prior VMS implementations [12–14,22–25]. Therefore, as a first investigation of the present VMS method, this
model is also used here. Since the model acts directly on the small scales, the SGS stress tensor is defined as
sm
ij ¼ 2lt

eS ij �
dij

3
eS kk

� �
; lt ¼ ðCsDÞ2qjeS j; ð24Þ
where lt is the eddy-viscosity coefficient, and eS ij ¼ 1
2
ð~ui;j þ ~uj;iÞ is the symmetric part of the small-scale velocity

gradient tensor, Cs is the Smagorinsky constant, jeS j ¼ ð2eS ij
eS ijÞ1=2, and D is a length scale representative of the

unresolved scales, which is computed using
D ¼ Dx1

P 1

Dx2

P 2

Dx3

P 3

� �1=3

; ð25Þ
where Dxi represents the element size in the ith direction and Pi is the polynomial degree of the finite-element
approximation in the ith direction. Finally, the SGS heat flux in (23) is computed from
qm
i ¼ jt

oeT
oxi

; jt ¼
ltcp

Prt
; ð26Þ
where Prt = 0.9 is the turbulent Prandtl number [26].
Note that we only consider the small-scale solution components in the SGS model (24), which therefore,

corresponds to the so-called small–small variant of the Smagorinsky model [11]. If all the small-scale compo-
nents in (24) are replaced by all the resolved scales, the classical Smagorinsky model is recovered.

5. Turbulent channel flow

5.1. Problem description

Planar channel flow has been a widely used test case for the research of turbulence in the presence of mean
shear. The flow is assumed to be passing between two horizontal plates separated by a distance 2d as shown in
Fig. 4, where x = x1 is the streamwise direction, y = x2 is the wall-normal direction, and z = x3 is the spanwise
Planar channel flow geometry. The arrow indicates the direction of the mean flow, and the shaded regions represent the channel
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direction. Results for wall bounded turbulent flows are often presented in wall-units, defined as xþi ¼ xius=m
and u+ = u/us, where m = l/q, and us ” (sw/q)1/2 is the friction velocity, with sw the average wall shear stress.

Numerous experimental and numerical investigations have indicated the presence of regions in the near-
wall vicinity of the flow in which the velocity is relatively low compared to their direct surroundings. These
near-wall streaks consist of well-defined structures independent of the Reynolds number, having a mean
streamwise extent of Dx+ � 400 and a mean spanwise separation of Dz+ � 100. Near-wall streaks fall into
the category of coherent structures, which play an important role in the dynamics of turbulent flows [21].
It was shown by Collis [3] that the scale partition within the VMS method should be chosen based on the
length scales associated with these near-wall streaks. In particular, the basic dynamics of the near-wall streaks
should be kept free from the direct influence of the model. It was found that spanwise scale separation lead to
sharper estimates of the required partition. This is likely due to the fact that near-wall streaks are more con-
sistently spaced in the spanwise direction. Therefore, when considering near-wall streaks, we focus on the
spanwise direction.

5.2. Simulation parameters

We assume the flow to be homogeneous in horizontal planes parallel to the walls, so that periodic boundary
conditions can be applied in the streamwise and spanwise directions. As a consequence of the periodic bound-
ary condition in the streamwise direction, the flow cannot be driven by a pressure gradient. Therefore, a con-
stant external body force is applied, which mimics the role of the pressure gradient, i.e. f = {�dp/dx, 0,0}T.

The resolution in the vicinity of the wall is increased by using a stretched mesh in the wall-normal direction
[23], such that
yj ¼
tanhðasð2j=Ny � 1ÞÞ

tanhðasÞ
þ 1; j ¼ 0; . . . ;Ny ; ð27Þ
where Ny is the number of elements in the wall-normal direction and as is a stretching factor, which is set equal
to as = 1.75.

At the solid walls we apply the no-slip condition for the velocity components and a constant wall temper-
ature. The latter allows internal energy created by viscous dissipation to be removed from the domain via heat
transfer so that a statistically steady state can be achieved.

In the present simulations, we choose the channel half-height d as the reference length, and the friction
velocity us as the reference velocity. These give rise to a reference Reynolds number Res = usd/m. As a first
investigation of the proposed VMS formulation, we perform simulations at Res = 180. The centerline Mach
number was set to M = 0.3, so that the results can be directly compared [4,5,23] to the incompressible DNS
data of Kim et al. [16]. The size of the computational domain is (6d, 2d, 4d) in the x1, x2, and x3-directions
respectively. As shown by various investigations [13,22,29,30], these dimensions are sufficiently large for this
Reynolds number. All simulations were started from an instantaneous incompressible DNS solution (obtained
from an external code) projected onto the finite element basis under consideration. The time step (non-dimen-
sionalized with us and d) was set equal to Dt = 0.002 for all simulations. This resulted in a maximum Courant
number of approximately 0.2 for the mesh with the finest spatial resolution. Based on test computations over a
range of time steps, with the current third-order accurate time discretization this value provides sufficient time
resolution to allow the errors to be dominated by spatial resolution effects.

In the following, we compare results obtained using no SGS model to results obtained by applying the SGS
model directly to all resolved scales, referred to as traditional LES, and results obtained from the VMS
method, in which the direct effect of the SGS model is restricted to the small resolved scales. The Smagorinsky
constant used in the traditional LES method is set to equal to Cs = 0.1, as this value has proven successful for
turbulent channel flow in many prior numerical experiments. Additionally, van Driest damping is employed
within the traditional LES method to account for the diminishing turbulent length scales as the solid walls are
approached. As suggested by Hughes [11], the SGS model within the VMS method employs a modified value
of the Smagorinsky constant used in the traditional model. This generally leads to higher values of Cs, as fewer
modes must now produce an equivalent amount of dissipation compared to the traditional method. However,
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we emphasize that no additional attempts were made to tune the Smagorinsky constant in order to improve
the obtained results.

5.3. Coarse mesh results

We begin with (8 · 8 · 8) elements with uniform polynomial degree P = 2. This resolution corresponds to
element spacings of Dx+ = 135 and Dz+ = 90 in the streamwise and spanwise directions, and Dy+ � 14.6 in the
wall-normal direction. Note that since this is a high-order accurate method (P > 1), the cut-off wavenumber
corresponds to kc = 8.

Obviously, for polynomial degree P = 2, there is only one possibility for the VMS partition, that is eP ¼ 2.
This corresponds to the large scales being represented by just the linear modes in each direction (Section 3),
while the small scales are the remaining modes having a quadratic variation in one or more of the coordinate
directions. Fig. 5 shows the results obtained for the mean velocity profile (a), the rms profiles (b), the Reynolds
stress (c), and the one-dimensional streamwise energy spectrum evaluated at y+ = 5.39 (d). Overall, the results
are in poor agreement with the DNS for all three methods. However, note that the Reynolds-stress obtained
from the VMS method is closest to the DNS. Furthermore, the energy content in the first few modes of the
energy spectrum obtained by the VMS method is closest to the DNS, while using no SGS model leads to exces-
sive energy content throughout the entire wavenumber range. Applying the SGS model on all scales as in tra-
ditional LES methods, on the other hand, leads to results that suffer from excessive dissipation.
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Clearly, the above resolution is too coarse for obtaining reasonable low-order statistics. Note that, in both
the LES and VMS results, the basic dynamics of the important coherent structures, i.e. the near-wall streaks,
are directly influenced by the SGS model. The spanwise element size (Dz+ = 90) is approximately equal to the
mean streak separation in spanwise direction. This means that the streamwise velocity profile in the spanwise
direction varies from a high to a low and back to a high value again within one element, as sketched in Fig. 6.
Note that such variation cannot be captured by the large-scale solution, which consists of only linear basis
functions. The quadratic modes do have the capability of capturing such velocity variation within the element,
however, these modes are contained within the small-scale space. Consequently, the SGS model is acting
directly on those scales which describe the high to low velocity variation.

5.4. Uniform h-refinement

Next, we consider the effect of h-refinement in all spatial directions by employing (16 · 16 · 16) elements
with P = 2. This mesh has a streamwise spacing of Dx+ = 67.5, a spanwise spacing of Dz+ = 45, and a wall-
normal spacing of Dy+ � 5.9. The cut-off wavenumber for this resolution corresponds to kc = 16. Note that
the spanwise element size now corresponds to half the typical streak spacing, or the streak size. As illus-
trated in the right graph of Fig. 6, the alternating spanwise velocity variation typical of near-wall streaks
can now be captured by the linear modes on two neighboring elements. Since the linear modes are con-
tained within the large-scale space, this feature of the near-wall streaks is not directly influenced by the
SGS model.

The results for the mean velocity, rms profiles, Reynolds stress and one-dimensional streamwise energy
spectrum are shown in Fig. 7a–d. The results obtained using no model are very similar to those at the coarse
resolution, that is dominated by insufficient diffusive mechanisms. The mean velocity obtained using the model
on all scales is in reasonable agreement with the DNS [16], while that obtained from the VMS method is indis-
tinguishable from the DNS at this scale. Likewise, the best overall agreement with the DNS [16] of both rms
profiles and Reynolds stress is obtained by the VMS method. It can be clearly seen from the energy spectrum
that energy content obtained by the VMS method closely follows that of the DNS [16], while using the model
on all scales again leads to excessive damping.

Fig. 8 shows an instantaneous contour-plot of the streamwise velocity in a horizontal plane in the near-wall
vicinity of the flow, obtained from the VMS calculation. This figure clearly demonstrates that the near-wall
streaks are captured, and confirms the typical streak spacings in streamwise (Dx+ � 400) and spanwise direc-
tion (Dz+ � 100).
z+

u +

"high" velocity

"low" velocity

Δz+ ~ 100

z+

u +

"high" velocity

"low" velocity

Δz+ ~ 100

Fig. 6. Illustration of the near-wall streamwise velocity distribution in spanwise direction due to low-speed streaks, relatively to a spanwise
element size. The modes at the bottom are the finite-element basis functions necessary to represent the velocity pattern associated with low-
speed streaks for different number of elements in spanwise direction: 8 elements (left) and 16 elements (right).
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Fig. 8. Instantaneous streamwise velocity contours in a turbulent channel flow at Res = 180, obtained from a VMS calculation on
(16 · 16 · 16) elements with P = 2 and eP ¼ 2.
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5.5. Uniform p-refinement

Now, we investigate the effect of uniform p-refinement by employing (8 · 8 · 8) elements with uniform
polynomial degree P = 3. The cut-off wavenumber for this resolution corresponds to kc = 12. Recall from Sec-
tion 5.3 that the spanwise element size corresponds to the mean streak separation. Based on previous obser-
vations, we begin with a partition parameter eP ¼ 3, so that the linear and quadratic modes are in the large
scale space and all modes that contain a cubic term are considered small scales. This ensures that the quadratic
modes, which are capable of capturing the basic streak velocity variation within an element (see Fig. 6), are
not directly influenced by the SGS model.

As can be seen from Fig. 9, the best overall agreement with the DNS [16] is obtained using the VMS
method. Both results obtained using no SGS model and those obtained by applying the SGS model to all
scales are qualitatively very similar to the coarse resolution results of Section 5.3.

In order to further investigate the influence of the partition parameter on the results, we consider the effect
of reducing the large-scale space by changing the large/small partition for the (8 · 8 · 8) mesh to eP ¼ 2. The
modes containing quadratic and cubic terms are now contained within the small-scale space. Recall from our
previous discussion that the quadratic modes, necessary to capture the streak velocity pattern within an ele-
ment at this resolution, are then directly affected by the model. Fig. 10 compares the results obtained using the
VMS method using eP ¼ 2 to that of the VMS method with eP ¼ 3 and the traditional LES method. Overall,
the results of the VMS method with eP ¼ 2 are in poor agreement with that of the DNS [16]. In fact, the results
are of intermediate quality between the VMS method with eP ¼ 3 and the LES method. These results again
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Fig. 9. Mean velocity (a), rms profiles (b), Reynolds stress (c), and one-dimensional streamwise energy spectrum (kc = 12) (d) for
Res = 180 obtained using (8 · 8 · 8) elements with P = 3: , DNS [16]; —, no model; - - -, LES; – Æ –, VMS with eP ¼ 3.
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give a clear indication that modes representing the basic feature of the near-wall streaks should be left free
from direct modeling terms.

6. Concluding remarks

We have considered the performance of a spatially-continuous modal-based VMS discretization for the
simulation of fully-developed turbulent channel flows. The discretization was found to be capable of produc-
ing good low-order turbulent statistics at relatively coarse levels of refinement, provided that the fundamental
modes of the largest near-wall coherent structures were contained within the model-free part of the basis. This
indicates that in spite of the reduced orthogonality of the modal basis, its scale separation is sufficient to allow
the present method to exploit the main advantages of the VMS approach.

The formulation of the method allows it to be applied to complex flow geometries while using relatively few
degrees of freedom. This raises the issue of how the VMS approach is best applied when approaching a new
flow. In the case that the scale of the most important structures is known a priori, then one can select the scale
partition so that the fundamental modes of these structures can be represented in the model-free part of the
solution basis. When approaching completely unknown flows, however, one must first resort to performing
resolution studies in order to identify the most relevant phenomena for the quantity of interest. If a jump
in accuracy is observed through variation of the partition parameter, however, correlations with physical flow
features should be sought. The experienced gained can then be used to compute similar problems with minimal
degrees of freedom, potentially exploiting locally-varying choices for the mesh size, P and eP . This appears to
be a clear advantage of VMS-LES over single-scale approaches.
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